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Basic Set Theory

Definition: A set is a well-defined collection of objects.

The capital letters A, B, C ... represent sets whereas a, b, c, ... denote their elements. 
We can have finite or infinite sets.

Example - If A is a set consisting of the squares of the integers 1, 4, 5, 7, it will
contain 4 elements and can be written as A = {1, 16, 25, 49} (elements in any order) =
{x2| x = 1, 3, 5, 7,}

A is finite whereas B = {1, 3, 5, 7, 9, ...} is infinite.  We denote elements as x 0 A. For
example, 16 0 A but 4 ó A.

Definition: A set containing no elements is called the null set denoted by i.

Example - {x|(x-1)2<0} = i

Definition: A set A is called a subset of B if every element of a set A is also an element
of a set B and is denoted as A d B.

Example - For A = {1, 16, 25, 49}, {1} d A, {1, 49} d A, i d A.
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Basic Set Theory
Definition: Two sets A and B are said equal if they have exactly the same elements,

i.e., A d B and B d A Y A = B.  

- U will denote the universal set.
- Any finite set of n elements has 2n subsets.

Example - Let U = {a, b, c}
  Therefore, U has 23  = 8 subsets which are {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a, b, c},

i.

Definition: A Venn diagram consists of a rectangle representing the universal set U
and circles drawn inside the rectangle representing subsets of U.

Example - If U = {a, b, c}, A = {a}, B = {b}  then we have as our Vem diagram:

U A Ba b c

Probability  CFIA/ACIA

U A B

Operations on Sets

Definition: The intersection of two sets A and B, denoted by , A 1 B, is the set of all
elements of U that are members of both A and B, i.e., A 1 B - {x| x 0 A and x 0 B}. 

Definition: Two sets A and B are disjoint if they have no elements in common, i.e. , A
1 B = i.

Definition: The union of two sets A and B, denoted by A c  B, is the set of all
elements of U belonging either to A or to B or to both, i.e., A c B = {x| x 0 A or x 0 B}.

A BU

UU A B
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Operations on Sets
Definition: The complement of a set A, denoted by } or Ac , is the set of all elements
of U not contained in A, i.e.,   

Ac = {x|x 0 U and x ó A}

Example - If: U = {1, 2, 5, 8, 9, 10, 13, 15} and A = {1, 5, 9, 10, 13},

 B = {1, 2, 5, 9, 10, 15} 

and  C = {2, 8, 15}, then:

A 1 B = {1, 5, 9, 10}

A 1 C = i

A c B = {1, 2, 5, 9, 10, 13, 15}

Ac = {2, 8, 15} = C

(B c C) 1 A = {1, 2, 5, 8, 9, 10, 15} 1 A = {1, 5, 9, 10}
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The Sample Space
 An event is the random outcome of an experience (covering anything from a
designed experiment, like tossing a coin, to observational phenomena, such as the
number of cows at slaughter detected with tuberculous lesions) .  The term
experiment is used to describe either uncontrolled events in nature or controlled
situations in a laboratory.   An experiment is the process by which an observation (or
measurement) is obtained.  Experiments may be quite diverse such as the following:

! serologically testing a Holstein heifer for enzootic bovine leukosis
 
! measuring the thickness of the skin at an intradermal tuberculin injection site

! interviewing a swine producer by phone to determine if plate waste is being fed
to his/her swine

Each of these experiments may result in one or more outcomes or events, which are
represented by capital letters, A, B, etc.  Two events are mutually exclusive if, when
one event occurs, the other cannot, and vice versa, e.g., a head or a tail in a toss of a
coin; a calf is either male or a female.  An event that cannot be decomposed is called
a simple event, e.g., a head or a tail in the toss of a coin. A set of all simple events is
called the sample space, e.g., a head and a tail in the toss of a coin; the results of a
Complement Fixation test: positive, suspect, anti-complementary and negative.

An event is a collection of one or more simple events, e.g., the toss of two heads in a
row.
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Sample Space and Events
An experiment as used in statistics refers to any activity resulting in the amassing of
data referring to outcomes which cannot be predicted with certainty.

Examples:
(I) Give a toxic substance to 10 rats and record the no. of deaths after four hours.
(ii) Count the number of yellow cars driven past your language lab on a specific
afternoon.
(iii) Toss three coins - a nickle, a dime, a quarter - simultaneously and record
whether a head or a tail appears for each.
(iv)Throw a red and a black die together and notice the values appearing on both

die.

Definition: A sample space S of an experiment E is the set of all possible distinct
outcomes. Each element of S or outcome of E is called a sample point and is denoted
by ei where i = 1, 2,  ...  Therefore, S ={e1, e2, e3, ...}.

Examples: For the experiments E in the examples above, the respective sample
spaces can be expressed as follows:

(i) S = {0, 1, 2, 3, 4, ..., 10}
(ii) S = {0, 1, 2, 3,...}
(iii)If H and T respectively represent a head and a tail and in the sequence the

first letter recording the sign of the nickel, the second that of the dime and the third
that of the quarter, then S = {HHH, HTH, HHT, THH, HTT, THT, TTH, TTT}.

(iv)If we use ordered pairs where the first value is the outcome of the red die and
the second that of the black die, we have S= {r, b)|1#r#6, 1#b#6}.    (36 outcomes).
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Sample Space and Events
Definition: An event is a subset of a sample space S.  Therefore, capital letters are
used for events and i and S are always events.

Examples  - Referring to the examples , we could consider the following events:
(I) A is the event that at least 2 rats died but no more than 6 died.  B = {2, 3, 4, 5,

6}
(ii) B is the event that at most 6 yellow cars drove past the lab.  A = {0, 1, 2, 3, 4,

5, 6}
(iii)C is the event that at least two tails occurred.  C = {HTT, THT, TTH, TTT}
(iv) D is the event that all heads appeared.  D = {HHH}
(v) G is the event that the black die recorded a 2.  G = {(1, 2), (2, 2), (3, 2), (4, 2), (5,

2), (6, 2)}.

Definition: Two events A and B are mutually exclusive if A 1 B = i. In the examples
above, C 1 D = i, thus C and D are mutually exclusive events.
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Die Toss Sample Space Example
 Experiment: Toss a die and observe the number that appears on the upper face.

Event A : Observe an odd number
Event B : Observe a number less than 4
Event E1: Observe a 1
Event E2: Observe a 2
Event E3: Observe a 3
Event E4: Observe a 4
Event E5: Observe a 5
Event E6: Observe a 6

Events A and B are not
mutually exclusive because
events occur when the 
number on the upper face
of the die is a 1 or a 3. 
Event A occurs when the
face is 1, 3 or 5 and can be
decomposed into a
collection of simpler 
events, E1, E3 and E5
which are mutually exclusive.
Event B occurs when E1, E2 or E3 occurs and can be viewed as a collection of these
mutually exclusive events.  All six events (E1 to E6 )form a set of mutually exclusive
outcomes and are called simple events.

A
S, the sample space

E1
E3

E5

E2

E4

E6
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Sample Space Examples
In the sexing of chicks, the sample space consists of only two outcomes, S = {M, F}.

The sample space for serum sample serological test results may comprise negative
(N), BPAT positive and ELISA positive (BE) and BPAT positive and ELISA negative
(Be).  Therefore, S = {N, BE, Be).

If the possible outcomes of an experiment or survey is the set of swine herds with
less than 200 pigs, the sample space can be written S = {x|x is a swine herd with less
than 200 pigs}.

S could be the set of all swine farms within a circle of radius of 5 km with centre at
the origin, a hog cholera outbreak.  S = {all swine farms within circle|x2 + y2 < 25}

Centre
(0,0) -
location
of hog
cholera
outbreak

Circle with a radius of 5 km
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The Concept of Probability
Probabilities are proportions that denote how likely the events are.  A probability is a
numerical value between zero and one.  The number is associated with an outcome or
event and specifies the likelihood of occurrence.  The probability may represent the
frequency with which some event occurs in a long sequence of similar trials or the
degree of belief that a person has that it will occur given all the relevant information.

Odds of an event is the ratio of the number of chances in favor over the number of
chances not in favor of an event.  Odds is the ratio of the probability of the
occurrence of an event to that of nonoccurrence, or the ratio of the probability that
something is so, to the probability that it is not so.   Between 1973-84 the odds of
human fatalities in aircraft flights were 1 to 54 (11 in 600 flights) in Turkey and 1 in a
million flights in Australia.  In the U.S.A. the odds that an aircraft will fall on and kill
you sometime this year is 1 in 25 million.  In the tossing of a balanced coin, there are
two events: "Head" and "Tail". Intuitively, the probability of a head is 0.5.  The odds
then are 1:1.

Classical Probability Concept 
A useful method to determine the probability of an event is where the experiment has
many basic Equally Likely Possibilities, such as in games of chance and tossing of a
coin.  If there are n equally likely possibilities, one of which must occur and s are
regarded as favorable, or as a "success," then the probability of a "success" is given
by the ratio  p = s/n .  In a well shuffled deck of 52 cards, the probability of one draw
of a card resulting in an ace is 4/52.  All cards are equally likely.  Four possibilities in
favor of drawing an ace are the four different aces.   Problems with the classical
approach:  Not all events can be cast in terms of a game of chance and there is no
situation with equally likely possibilities.
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The Concept of Probability
Definition: If an experiment consists of n different equally likely outcomes and exactly
m of these outcomes favour an event A, then the probability of event A denoted by
P(A), is defined as

Example  - A cage contains four white, eight brown and three colour-mixed guinea
pigs.  If A = event that a brown guinea pig is chosen and B = event that a white or a
colour-mixed guinea pig is drawn, then

Example  - A card is drawn from a standard deck of 52 cards.  If A = event that an
ace is picked, B = event that the ace of hearts is picked, C = event that a heart is
picked and D = event that a spade with value 5 or 6 is picked, then
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The Concept of Probability
Example  - A pair of dice is cast.  If A = event that both die record the same value, B
= event that an 8 is rolled and C = event that at least a "4" is rolled, then
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The Concept of Probability
Properties of a Probability Model: If we have an experiment E, then the probability of
an event A, P(A), satisfies the following properties:

(i) 0 # P (A) #  1
(ii) P (i ) = 0
(iii) P(S) = 1,

where S is the event where all possible outcomes of E occur.

Note: P(A) =   3 probabilities of the outcomes in A.

In many experiments, the outcomes are not equally likely.  For instance, in recording
the probability of a car accident on a particular road, of an electron microscope being
defective in its first month of use, of a person living to age 80 or of getting a head
when an unbalanced coin is tossed, the outcomes comprising the events are not
equally likely.  Here we must consider how frequently an event occurs when the
experiment is repeatedly performed under identical conditions. In n repetitions or
trials, if an, event A  occurs m/n times, is called the relative frequency of the event A
in n trials.  As n increases, this relative frequency stabilizes and is ensured a limit f/n
say, which we refer to as the relative frequency or a posteriori concept of probability.

Definition: If an experiment is performed n times and if an event A occurs m times,
then the relative frequency of A is m/n.  If we assume that as n increases the relative
frequency m/n approaches a limit, then this limit is called the probability of A.  In
practice, we estimate P(A) by m/n for a large n.
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The Concept of Probability
Example - A toxic substance is given to 300 rats and the time taken for death to occur
(in hours) recorded. The following results were obtained assuming the count is done
only at hour intervals:

No. of Hours Until Death Occurred Frequency of Rats (cumulative)
1       48
2 172
3  240
4  261
5 280

  $6 300

If A = event that a rat took at most 2 hours to die,
   B = event that a rat took at most 2 hours but more than 1 hour to die and
   C = event that a rat took more than 5 hours to die, then

by the frequency definition of probability.
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The Concept of Probability

(iii) In the early 1950's, L.J. Savage introduced the personalistic concept of
probability which measure the confidence rather than the likelihood that a particular
individual has in the truth of a particular proposition or occurrence.  The process here
need not involve repeatability such as events which can only occur once.

This subjective approach, in the absence of past data, requires assigning the
probability to an event based on one's best available evidence and judgment.

Example -
        (i) probability that a cure for cancer will be discovered within the next seven 

years
(ii) probability or chance that rain will occur tomorrow
(iii)probability that Iraq's government will fall during the oncoming month
(iv) probability that a woman will be elected Prime Minister of Canada
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The Concept of Probability
Despite the fact that the concept of probability has been under the scrutiny of philosophers,
mathematicians, and scientists for about 300 years, it has successfully resisted reduction to a
single, perfectly clear definition.  To some, probability implies a degree of uncertainty about future
events (Will it rain tonight?) or about whether or not some event has already taken place (Did
Caesar cross hear?). When probabilities are assigned to such statements, they are called
"subjective probabilities" because the probability lies in the person who holds the belief rather
than in the event. For, after all, rain will or will not fall tonight, and Caesar did or did not cross
here. There is no uncertainty in the event itself, only in our knowledge about it.

To others, the term "probability" may also be attached to a scientific hypothesis; one might attach
a probability of 0.8 (or 0.3) to the proposition that a child's creative ability is fully determined by
the time that he reaches age six.  The degree of probability assigned is reached in accordance
with David Hume's suggestion that "a wise man proportions his belief to the evidence." It has
been argued that this kind of probability is merely another form of subjective probability, for the
proposition itself can be only true or false.

To the mathematician, however, the term "probability" has different meanings. Most important is
that of relative frequency. It should be emphasized that the frequency concept of probability is
applicable not to events that are unique but only to those that occur repeatedly. This feature
permits the mathematical development of the theory of probability underlying the entire statistical
method.  G. Polya provides an amusing example of "how not to interpret the frequency concept of
probability."

The doctor shook his head as he finished examining the patient. "You have a very serious
disease," said the doctor.  "Of ten patients who have got this disease only one survives.  But you
are lucky.  You will survive because you came to me.  I have already had nine patients who all died
of it."
From G. Polya, Patterns of Plausible Inference, (Princeton, N.J.: Princeton University Press, 1954).
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The Concept of Probability

The Frequency Interpretation of Probability
Sometimes called the empirical approach:  Based on analysis of data randomly sampled
from a population of values.  The probability is used in making statements about the
makeup of the population, that is, in making statistical inferences.  The probability of an
event (happening or outcome) is the proportion of times that events of the same kind
will occur in the long run.
For example: A certain serological test detects an infected animal in 95% of infected
animals that are tested.

The relative frequency = frequency/n =x/n and:

 
Law of Large Numbers

If a situation, trial, or experiment is repeated again and again, the proportion of
successes will tend to approach the probability that any one outcome will be a success.
The Law of Large Numbers can be illustrated with a simulation:  To simulate the flipping
of a balanced coin, a random number was generated between 0 and 1, X, using the
Rand() function in Microsoft Excel.  For X < 0.5, then a "head" occurred, otherwise a
"tail" occurred.  The proportion of heads as the number of flips of the coin increases
was then determined.  The Law of Large Numbers predicts that this proportion will get
arbitrarily close to 0.5.
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The Concept of Probability
The Law of Large Numbers predicts that the proportion of heads will become
close to 0.5 as the number of flips increases.  In the graph below, as the
number of flips approaches 500 the proportion of heads approaches 50%.
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The Concept of Probability
Subjective Probability

The frequency approach has its limitations.  A frequentist who has no data is paralyzed.
 Even in cases where data are available, the data may not be representative of or
relevant to the problem at hand.  Hence, statistical evaluation of data may be an
insufficient basis for estimating variablility and uncertainty in a quantity.  In many
situations it is not possible to repeat the experience.  Thus, there may be cases in
which data are lacking in quantity or quality but for which an analyst has other
information that can be used to construct a probabilistic representation of an input to a
model.  This alternative to the fequentist approach is the subjectivist approach, based
theoretically on Bayesian inference.

With the subjectivist or Bayesian view, a probability of an event is the degree of belief
that a person has that it will occur, given all the relevant information currently known to
that person.  The subjective approach is to base the probability of an event on a
person's perceived probability of the event.  Thus the probability is a function not only
of the event, but of the state of information.  Subjective probabilities obey the same
axioms as objective or frequentist probabilities.  When there is sufficient empirical data
for the frequentist ot estimate a probability, the subjecitivist’s assessment of his/her
probability will converge to the frequentist’s estimate of the probability of the event.

Bayesian methods heavily use subjective probabilities and likelihoods of data
configurations.  For example, a prior probability that a population of animals is infected
with a disease agent would be updated after survey or screening test results were
obtained.  This prior probability would be based on subjective probability.
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Gambling
Although it may be surmised that the student of probability is not likely to be a gambler (having
more faith in his knowledge of relative frequencies than in luck), we cannot expect that the
reader will be able to suppress completely whatever tendencies he may have to indulge in
games of chance. Therefore we offer two pieces of advice to those who will succumb to
temptation. The first is from John Maynard Keynes, the famous British economist, and is quite
general in nature.  The second is quite specific.  Neither is guaranteed to increase one’s fortune
in the slightest.

Keynes gives a mathematical proof that "the poorer a gambler is, relatively to his opponent, the
more likely he is to be ruined." Furthermore, if one's opponent has resources of an infinite
amount, one's ruin is certain. Continuing the argument, he points out that "The infinitely rich
gambler is the public. It is against the public that the professional gambler plays, and his ruin is
therefore certain." Keynes then considers (possibly with tongue in cheek) some of the
implications of this conclusion thus:

... no gambler plays, as this argument supposes, forever. At the end of any finite quantity of
play, the player, even if he is not the public, may finish with winnings of any finite size. The
gambler is in a worse position if his capital is smaller than his opponent's - at poker, for
instance, or on the Stock Exchange. This is clear. But our desire for moral improvement
outstrips our logic if we tell him that he must lose. Besides it is paradoxical to say that
everybody individually must lose and that everybody collectively must win. For every individual
gambler who loses there is an individual gambler or syndicate of gamblers who win. The true
moral is this, that poor men should not gamble and that millionaires should do nothing else.
But millionaires gain nothing by gambling with one another, and until the poor man departs
from the path ofprudence the millionaire does notfind his opportunity. If it be replied that in fact
most millionaires are men originally poor who departed from the path of prudence, it must be
admitted that the poor man is not doomed with certainty. Thus the philosopher must draw what
comfort he can from the conclusion with which his theory furnishes him, that millionaires are
often fortunate fools who have thrived on unfortunate ones.
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Gambling
The second piece of advice concerns what is known as the "gambler's fallacy." 
This fallacy is well known to all students of probability and statistics; yet
surprisingly few gamblers seem to be aware of it, and they greet the notion with
considerable skepticism. The gambler's fallacy is the belief that the probability of an
event's occurrence changes with the occurrence of the preceding events.  For
example, a roulette player may observe that on the last six turns of the wheel the
ball has fallen in a red pocket. "Aha," he muses, "we are about ready for a black."
Perhaps he is cautious. He waits for another turn of the wheel.  Red again! Now he
has no doubts whatever. Red has appeared seven times in a row. On the next turn
the ball must fall in the black! He splurges and bets all his chips on the black. Does
he win? We cannot answer that, unfortunately.  But we can say that the gambler's
hopes were based on a mistaken premise - for the odds against a black on the
crucial turn of the wheel are exactly what they are on any turn of the wheel. Each
event, each turn of the wheel (assuming that it is honest) involves exactly the same
probability that red or black will appear as does any other turn, for each turn is
independent of every other. The probability of the occurrence of an event is not
dependent upon the outcome of previous events, provided that the events occur at
random. And randomness, of course, is the essential element of gambling.

From John Maynard Keynes, A Treatise on Probability (New York:
St. Martin's Press, 1921).
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Probability Rules

Simple Events
The requirements for simple-event probabilities, are that each probability must lie
between 0 and 1 and the sum of the probabilities for all simple events in S equals 1.
 For every event A, 0 # P(A) # 1.  The impossible event has probability zero, P(i) = 0.

Definition: The probability of an event A is equal to the sum of the probabilities of
the simple events contained in A. 

Calculating the probability of an event:
1. List all simple events in the sample space.
2. Assign an appropriate probability to each simple event.
3. Determine which simple events results in the event of 

    interest.
4. Sum the probabilities of the simple events that result in the  

    event of interest.

Be careful to satisfy two conditions in your calculation:
- Include all simple events in the sample space.
- Assign realistic probabilities to the simple events.
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Probability Rules

Compound Events
Compound events can be
formed by unions or
intersections of other events.

A B

A1B

S, the sample space

Definition: The
intersection of events
A and B, denoted by A
1 B,  is the event that
A or B occur.

A B

S, the sample space

Definition: The union of
events A and B, denoted
by A c B, is  the event
that A or B or both
occur.
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Probability Rules
Definition: When two events A and B are
mutually exclusive, it means that when A
occurs, B cannot, and vice versa. 
Mutually exclusive events are also
referred to as disjoint events. When
events A and B are mutually exclusive:
P(A 1 B) = 0    and    P(A c B) = P(A) +
P(B).

If P(A) and P(B) are known, (A c B) do not
need to be broken down into simple
events, simply sum them.  The
generalized rule for mutually exclusive
events: if k events are mutually exclusive,
the probability that one of them will occur
equals the sum of their individual
probabilities, i.e.,
P(A1cA2c...cAk) = P(A1)+P(A2)+...+P(Ak)
for mutually exclusive events A1, A2, ...Ak.

A B

S, the sample space

Definition: The complement of an
event A, denoted AC, consists  of all
the simple events in the sample space
S that are not in A.
P(A) + (AC) = 1 and P(AC) = 1 - P(A).

A

AC
S, the sample space
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Probability Rules
The conditional probability of A, given that B has occurred, is denoted as P(A | B),
where the vertical bar is read “given” and the events appearing to the right of the bar
are those that are known to have occurred.  A and B are two events of the sample
space S.

Definition: The conditional probability of B, given that A  has occurred, is

 

The conditional probability of A, given that B has occurred, is

Definition: Two events A and B are said to be independent if and only if either
P(A| B) = P(A)   or   P(B | A) = P(B), otherwise, the events are said to be dependent.

Two events are independent if the occurrence or nonoccurrence of one of the events
does not change the probability of the occurrence of the other event.
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Probability Rules 

Additive Rule of Probability
Given two events of a finite sample
space S, A and B, the probability of
their union, A c B, is equal to 
P(AcB) = P(A) + P(B) - P(A1B).  If A
and B are mutually exclusive, then
P(A1B) = 0 and P(AcB) = P(A) +
P(B).

Multiplicative Rule of Probability
The probability that both of the two events of a finite sample space S, A and B, occur
is P(A1B) = P(A)P(B|A) = P(B)P(A|B).

If A and B of a finite sample space are independent, P(A1B) = P(A)P(B) and P(A|B) =
P(A) or P(B|A) = P(B).

Similarly, if A, B, and C are mutually independent events, then the probability that A,
B, and C occur is P(A1B1C) = P(A)P(B)P(C).

A B

A1B

S, the sample space
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Bayes’ Rule
Thomas Bayes (1702-1761) was a Presbyterian minister who introduced subjective/reverse probability thinking
which caused him great persecution and no recognition by mathematicians of his day. But today a whole field of
statistics called Bayesian inference has been developed from his original concept and is widely used, gaining a
greater foothold with the years even though some statisticians still fiercely oppose it. One of his basic results is
known today as Bayes' Theorem.

Definition: Mutually exclusive and exhaustive events are non-overlapping events that,
taken together, make up the entire sample space.

Law of Total Probability
Given a set of events S1, S2, S3, ..., Sk that are mutually exclusive and exhaustive and
an event A, the probability of the event A can be expressed as:

P(A) = P(S1)(PA|S1) = P(S2)P(A|S2) + P(S3)P(A|S3) + ... + P(Sk)P(A|Sk).

In the adjacent figure, the sample
space is divided into 3
subpopulations.

A = (A1S1) c ((A1S2) c (A1S3)

A = c Si for i = 1 to k and Si 1 Sj = i,
i … j

A1S2

S, the sample space

S1

A1S1

S3S2

A1S3
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Bayes’ Rule
Let S1, S2, ..., Sk represent k mutually exclusive and exhaustive subpopulations with

prior probabilities P(S1), P(S2), ..., P(Sk). If an event A occurs, the posterior probability
of Si given A is the conditional probability

for i = 1, 2, ..., k, and A = c Si for i = 1 to k and Si 1 Sj = i, i … j.

The probabilities P(S1), P(S2), ..., P(Sk) are called prior probabilities.  When the prior
probabilities are unknown, it is possible to assume that all subpopulations are equally
likely, so that P(S1) = ... = P(Sk) = 1/k.  The conditional probabilities P(Si|A) are called
the conditional probabilities because these are the probabilities that result after taking
account of the sample information contained in the event A.

Probability  CFIA/ACIA

Bayes’ Rule
Other wording for Bayes’ Rule is as follows:

Definition: If A1, A2, ..., An   are events of a sample space S such that A1 c A2 c ... An =
S, then A1, A2, ..., An   are called exhaustive events of S.

Bayes' Theorem: Let A1, A2, ..., An   be pairwise mutually exclusive and exhaustive
events of a sample space S where P(Ai) … 0 for i = 1, 2, ..., n .  Let E be any event of S
such that P(E) … 0.   Then

    for i = 1, 2, ..., n.

Examples for Bayes' Theorem

Cage I contains four brown guinea pigs and six white ones while cage II has three
brown and two white guinea pigs. We select a cage at random and then choose one
guinea pig randomly from that cage.
i)What is the probability that cage I was chosen given that the brown guinea pig was
drawn?
Let A1 = event that cage I is chosen, A2 = event that cage II is chosen, E = event that a
brown guinea pig is drawn.  Then we have as given that  

and we are asked to find P(A1|E).
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Bayes’ Rule

ii) What is the probability that cage II was chosen if a brown guinea pig was drawn?

iii) What is the probability that a brown guinea pig is drawn?

iv) What is the probability that cage I was chosen knowing that a white guinea pig was
randomly drawn?

Probability  CFIA/ACIA

Bayes’ Rule
Example  A healthy rat may be infected with three types of organisms A, B and C in a
laboratory experiment. If we assign an equal number of rats to each possible
organism and notice that a rat has a probability    and     of becoming ill when
introduced to organism A, B and C respectively.

(i) A rat is chosen at random after the experiment is concluded and found to be
ill. What is the probability that he received organism A? What is the probability that he
was infected with either organism A or organism B?

(ii) What is the probability that he received organism C if the rat is found healthy?

Let A1 = event that the rat is infected with organism A, A2 = event that the rat is
infected with organism B, A3 = event that the rat is infected with organism C and E =
the event that the rat is found ill.
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Probability  CFIA/ACIA

Bayes’ Rule
The use of Bayes’ Rule and diagnostic testing is commonplace as follows:
P(D+) is the prior probability of a disease in a population.

P(D-) is the prior probability of non-disease in a population.  D+ and D- are mutually
exclusive of each other and P(D+) + P(D-) = 1.
P(T+|D+) is the probability of a positive test result (T+) given that the animal is
diseased (D+).  It represents the test sensitivity.

P(T+|D-) is the probability of a positive test result (T+) given that the animal is not
diseased (D-).  It is equal to 1 -specificity.

P(D+|T+) is the posterior probability of disease (D+) given a positive test result (T+).  It
is the predictive value of a positive test.

A false positive is the event that the test is positive for a given condition, given that
the person does not have the condition.
A false negative is the event that the test is negative for a given condition, given that
the person has the condition.
Prior probability: Probabilities of subpopulations (also called states of nature)
occurring prior to observing sample information.
Posterior probability: Probabilities of the subpopulations that have been updated
after observing the sample information contained in an event.
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Bayes’ Rule
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In relation to Bayes’ Rule the prior probability is represented by the disease
prevalence (p).  The posterior probability is represented by the predictive value of a
positive test (PVP) or P(D+|T+).  In the table above in which words are substituted for
notation, the PVP can be expressed as follows:

Bayes’ Rule

Probability  CFIA/ACIA
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Bayes’ Rule
The following expressions illustrate the application of Bayes’ Rule and other
probabilities associated with the diagnostic test:

Predictive value of a positive test (PVP)

Sensitivity of the test

Predictive value of a negative test (PVN)

Probability  CFIA/ACIA

Bayes’ Rule

Apparent prevalence (AP)

Probability of a negative test

True prevalence (TP)

Probability  CFIA/ACIA



[ ] [ ]Q P T P T D P T D P T( ) ( | ) ( | ) ( )+ − + − = − + − − − +1 1

= − − − −P T D P T( | ) ( )

[ ]= − − − − ∩ − + − ∩ +P T D P T D P T D( | ) ( ) ( )

[ ]= − − − − − − + − ∩ +P T D P D P T D P T D( | ) ( ) ( | ) ( )

[ ]= − − − − − − ∩ +P T D P D P T D( | ) ( ) ( )1

= − − + − + − +P T D P D P D P T D( | ) ( ) ( ) ( | )

[ ]= + − − − − +P D P T D P T D( ) ( | ) ( | )

[ ]= + − + − − − +P D P T D P T D( ) ( | ) ( | )1

[ ]= + − + − + − +P D P T D P T D( ){ ( | ) ( | ) }1

[ ] [ ]∴ + =
+ − + −

− + − + − +
=

− −

− − + −
P D

P T P T D
P T D P T D

AP S
S S

P

P e

( )
( ) ( | )
( | ) ( |

( )
( ) ( )1

1
1 1 1

P I R PVN

p Sp
p Sp p Se

n

n

( | ) ( )

(( )
( ) ( )

= = =

=
−

− + −








0 0

1
1 1

P I R PVN

p Sp
p Sp p Se

n

n

( | ) ( )

(( )
( ) ( )

≥ = = −

= −
−

− + −








1 0 1

1
1

1 1

Bayes’ Rule

Proof for True Prevalence
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Bayes’ Rule
Probability that no infected animals exist in a group given that
all animals test negative

Where,
I = number of infected animals in the group
R = number of animals that test positive in the group
n = number of animals in the group

Probability that at least one infected animal exists in a group
given that all animals test negative
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