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Properties of the Beta Distribution

The beta distribution belongs to the family of probability densities of continuous
random variables taking on values in the interval (0,1).  It is useful to model the
uncertainty about the unknown probability p of some event.  The most typical
application is with the use of the binomial distribution for which the knowledge or
uncertainty about p is represented by assuming that p is random with a beta
distribution.
The distribution can be readily transformed to a four-parameter distribution in
which the additional parameters represent the range endpoints.  The flexibility of
the distribution encourages its empirical use in a wide range of applications.  It is
useful in Bayesian statistics because the beta can easily be updated to account for
new data while retaining the prior information.
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The beta variate
$ (0.5, 0.5) is an
arc sin variate.

The beta variate $ (2, 1)
is a power function
variate and is
equivalent to the
triangular distribution
where the minimum
value is 0, the most
likely is 1 and the
maximum is 1
(Triang(0, 1, 1).
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The beta variate $ (1, 1) is
a uniform or rectangular
variate, i.e.,Uniform(0,1).
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The beta variate where "1 > 1,
"2 > 1 the beta density takes the
shape such as that of $ (3, 5).
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The beta variate where "1 < 1,
"2 > 1 the beta density takes the
shape such as that of $ (0.8, 3).
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Properties of the Beta Distribution

Beta(3, 3)
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Beta(1, 3)
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"1 = 2, "2 = 4

"1 = 0.5, "2 = 0.5

"1 = 1, "2 = 1

Cumulative Distribution Function Curves

Distribution function curves for the beta variate $("1, "2).
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Properties of the Beta Distribution

Probability density function:

Cumulative distribution function: no closed form (tables and numerical methods
exist)
Parameters: "1 > 0, "2 > 0.  Both are shape parameters.

Domain: 0 # x # 1

Mean (:): "1/("1 + "2 )

Variance (F2): ("1 "2)/[("1 + "2)2("1 + "2 + 1)]

Mode: ("1 - 1)/("1 + "2 - 2) if "1 > 1,  "2 > 1
0 and 1, if "1 < 1,  "2 < 1
0, if "1 < 1,  "2 $ 1 or if "1 = 1,  "2 > 1
1, if "1 $ 1,  "2 < 1 or if "1 > 1,  "2 = 1
does not uniquely exist if "1 = 1,  "2 = 1
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Cumulative distribution function
for Beta (0.5, 0.5) as an output of
@RISK simulation

Probability density function for
Beta (0.5, 0.5) as an output of
@RISK simulation
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Properties of the Beta Distribution

Properties of the Beta Subjective Distribution

Probability density function:
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Cumulative distribution function:

Parameters:

Domain: minimum<x<maximum

Mean (:):

Variance (F2): (("1 "2)/[("1 + "2)2("1 + "2 + 1)])×(maximum-minimum)2
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Properties of the Beta-Pert Distribution

Probability density function:

Beta Probability Distribution CFIA/ACIA

Cumulative distribution function:

Parameters: minimum<most likely<maximum

Domain: minimum<x<maximum

Mean (:):

Variance (F2): (("1 "2)/[("1 + "2)2("1 + "2 + 1)])×(maximum-minimum)2

Sun Rise Example
One of the questions posed by the mathematician Pierre-Simon Laplace was: What
is the probability that the sun will rise tomorrow?  The question can be rephrased
as: Suppose that some event A occurred in all of a large number N of trials.  What is
the probability that it will occur again on the next trial?

The question can be answered by assuming the Bernoulli model of independent
trials and equally likely structure (Laplace’s Rule of Succession).  It says that if
some particular event has occurred in n consecutive trials, the probability is
approximately (n+1)/(n+2) that it will occur on the very next trial.  Part of the
derivation is set out below.
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Sun Rise Example
A rather conservative estimate of the time when we know that the sun was rising
every day is about 7,000 years.  Maybe it is possible that before the first written
records, the sun did not rise but was (say) switched on suddenly in the sky or
operated under some other principles.  Thus letting n = 365 × 7,000 = 2,555,000
sunrises, then (n+1)/(n+2) . 0.9999996.

An approach using the beta distribution is to estimate the beta shape parameters
as "1 = x+1, "2  = n+1-x., where x = 0 and n = 2,555,000 for the probability
distribution of failure.  This beta distribution could be considered input fraction f1. 
This distribution has a mean value of 3.91 × 10-7. Therefore, the probability of
interest is (1 -f1) which is the
complement of the failure probability.

The graph at right depicts
the beta distribution (@RISK
simulation output) of the
failure of the sun rising
based on the evidence of
success over 7,000 years.

Probability of failure
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Dry Cured Ham and HCV Example
In the Parma ham-hog cholera virus (HCV) study conducted by McKercher et al.
(1987) 12 pigs were inoculated intramuscularly with a 1 ml of 1:10 suspension of
spleen and blood (105.3 PFU/g) in both a US and an Italian conducted experiment. 
There were 5 uninfected controls in the US experiment and 1 control in the Italian
experiment.  The pigs were slaughtered 5 days after inoculation.  A 1 g sample of
muscle, bone marrow and fat from each of 3 hams from inoculated pigs and from
one of the control pigs was tested in triplicate at each sampling time.  Each pig had
been identified and each ham marked with the numbers 1 or 2.  The method of
identification was used so that no two hams from the same pig would be tested at a
respective sampling period. In samples in which negative results were obtained, the
fluids from the initial tests were subpassaged two additional times.  Thus, negative
samples would have been tested three times before being considered negative for
the virus. When all 9 samples from inoculated pigs were negative, then portions of
the samples were pooled for inoculation into two 20-30 kg pigs.  When two tests
performed at two consecutive time intervals were negative in vitro and confirmed
negative in vivo in pigs, the experiment was considered terminated and the ham
considered not to contain any infective virus after that respective time period. This
amounted to 9 samples (one of muscle, bone and fat taken from each of 3 infected
hams) at two time periods in both the US and Italian experiments, i.e., 36 samples
tested in triplicate for the in vitro tests.  These same samples were pooled and
inoculated into two pigs in both the US and Italian experiments, i.e., 18 samples
pooled and inoculated into each of two pigs for the two time periods in both the US
and Italian experiments.  The US phase of the experiment showed the loss of
infectivity to pigs between 188-313 days while the Italian phase showed that the
infectivity of HCV disappeared between 112-189 days. 
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Dry Cured Ham and HCV Example

Question: Can these experimental study results be used to estimate the probability
of survival of hog cholera virus in the dry cured hams following processing?

Yes, the studies provide evidence of the survivability of hog cholera virus in the dry
cured hams in the form of x successes in n trials.  The probability of HCV survival
can be modelled using the beta distribution.

The experimental study of both the US and Italian phases combined thus indicated
that n = 72 samples and x = 0.  The two detection systems, in vitro and in vivo (pig
inoculation), are sufficiently different to exclude any intra-test correlation in
repeated tests.  The sensitivity of each test was considered to be 100%. Parameters
of the beta distribution can be estimated as follows:
"1 = x+1
"2  = n+1-x.
The probability of HCV survival in the dry cured ham is thus $(1, 73).
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Dry Cured Ham and HCV Example

Beta distribution curve $ (1, 73) of the survival of hog
cholera virus in dry cured hams.
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Pseudorabies Within-herd Prevalence Example

Estimates of the prevalence of
the within-herd prevalence of
pseudorabies in growing and
finishing pigs in infected herds
were obtained from serological
studies.  The table at right
presents the frequency of 127
herds as to prevalence.  None
of the pigs had been
vaccinated against
pseudorabies.

For a risk assessment on the
importation of finished pigs
from a pseudorabies infected
country, what probability
distribution can be used to
model the within-herd
prevalence of exposure to
pseudorabies virus?
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Pseudorabies Within-herd Prevalence Example

Graph of frequency distribution of 127 herds according
to pseudorabies serological prevalence in growing and
finishing pigs.

Prevalence
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Pseudorabies Within-herd Prevalence Example

A bimodal distribution of prevalence is apparent from the frequency distribution of
the seroprevalence in the 127 herds.  The mean prevalence is 0.309213 and the
standard deviation is 0.438373.  A two parameter beta distribution is a useful
probability distribution for representing a prevalence, probability or proportion
bounded by 0 and 1.  The shape parameters "1 and "2 were estimated with the
following expressions:

The within-herd prevalence of exposure to pseudorabies virus was modelled using
the beta distribution $(0.034554, 0.077157).
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Pseudorabies Within-herd Prevalence Example

Comparison of the input and beta $(0.034554, 0.077157) distributions of within-herd
prevalence of exposure to pseudorabies virus.
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Bayesian Update Example
The seroprevalence of some disease in a population of export animals is the
parameter of interest.  In this example, the prior probability distribution is based on
no prior information.  The unknown population proportion can take on any value
between 0 and 1, hence, p is a continuous random variable.  The probability density
function for the beta distribution is as follows:

With no information, the choice for "1 and "2 is to let both parameters equal 1. 
Substituting this value for the two parameters above equates to 1, and the shape of
the distribution can be represented by a horizontal line.  This is equivalent to
Uniform(0, 1), implying that every value of p between 0 and 1 is equally likely. 
Although the probability that a continuous random variable takes on a specific
value equals zero, one should only speak about the probability that p lies within
intervals.  The uniform distribution indicates that the probability that p falls in an
interval of given length is the same no matter where the interval is located in the
range from zero to one.
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Bayesian Update Example
Bayes’ Rule specifies how the prior probability distribution should be updated to
produce a posterior probabiltiy distribution that accounts for the additional data.  If
P(A) is the prior probability of the population prevalence, P(E) is the probability that
the evidence E will be observed and P(E|A) is the conditional probability that the
evidence will be oberved given that P(A) is correct, then Bayes’ Rule states that the
posterior probability that A is true given that E has been observed is:

Posterior
Prior

Correction
factor

The correction factor comprises P(E|A) which is often called the likelihood since it
specifies the likelihood of obtaining the evidence given the prior information.  The
denominator of the correction factor is regarded as a normalizing factor, because
the posterior probabilities must sum to unity.  Thus Bayes’ Rule states that the
posterior probability is proportional to the prior probability and the likelihood of the
evidence.  In this  example, the additional evidence is a sample of the export animal
population in which 1 test of 500 animals tested is seropositive.  In the second
column of the table on the following slide, the prior probability P(A) is indicated. 
P(E|A) is derived from the binomial distribution in which x = 1 and n = 500. 
P(A)P(E|A) is simply the product of the prior and conditional probability.  The
posterior probability is obtained by dividing P(A)P(E|A) by the sum so that the
posterior probabilities sum to unity.
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Prevalence
P(A) Prior 

Distribution P(E|A) P(A)P(E|A) P(A|E)

0 1 0 0 0
0.0001 1 0.045300699 0.045300699 0.002156
0.0002 1 0.086406066 0.086406066 0.004113
0.0003 1 0.123606945 0.123606945 0.005884
0.0004 1 0.157176289 0.157176289 0.007482
0.0005 1 0.187370195 0.187370195 0.00892
0.0006 1 0.214428873 0.214428873 0.010208
0.0007 1 0.238577565 0.238577565 0.011357
0.0008 1 0.260027415 0.260027415 0.012378
0.0009 1 0.278976289 0.278976289 0.01328
0.001 1 0.295609548 0.295609548 0.014072
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Bayesian Update Example
Microsoft Excel function BINOMDIST(1, 500,
p(Se)+(1-p)(1-Sp),0) where Se = 0.95 and Sp = 1.00
and p is the discretized prevalence.

Bayesian Update Example
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The posterior probability P(A|E) is represented as a beta distribution as portrayed
above.


